Metabolites of arachidonic acid in the nervous system of Aplysia: possible mediators of synaptic modulation.

نویسندگان

  • D Piomelli
  • E Shapiro
  • S J Feinmark
  • J H Schwartz
چکیده

Release of arachidonic acid from membrane phospholipids is receptor-mediated and might generate second messengers in neurons. We tested this idea using the simple nervous system of the marine mollusk, Aplysia californica. Aplysia neural components metabolize arachidonic acid through lipoxygenase and cyclo-oxygenase pathways. We identified 2 major lipoxygenase products, 12- and 5-hydroxyeicosatetraenoic acids (12-HETE and 5-HETE), and 2 cyclo-oxygenase products, PGE2 and PGF2 alpha. These metabolites of arachidonic acid are formed in synaptosomes, as well as in identified nerve cell bodies, indicating that both lipoxygenase and cyclo-oxygenase pathways are active within neurons. Application of the modulatory neurotransmitter histamine to cerebral ganglia that had been labeled with 3H-arachidonic acid induced the formation of 3H-12-HETE. This response was inhibited by the histamine antagonist cimetidine. Furthermore, release of radioactive 5-HETE and 12-HETE was observed after intracellular stimulation of the histaminergic cell C2 in cerebral ganglia labeled with 3H-arachidonic acid. Cimetidine also inhibited this response. Application of serotonin or stimulation of the giant serotonergic cell (GCN) in the cerebral ganglion did not cause detectable amounts of the labeled eicosanoids to be released. We found that intracellular stimulation of putative histaminergic neurons in the L32 cluster of the abdominal ganglion, which produces presynaptic inhibition in L10 neurons, also elicited the release of 3H-12-HETE and 3H-PGE2. Thus, for the first time we provide evidence that synaptic stimulation promotes turnover of arachidonic acid in neurons. We suggest that metabolites of arachidonic acid are likely to participate in some postsynaptic responses to histamine and may be second messengers for presynaptic inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of an 8-lipoxygenase pathway in nervous tissue of Aplysia californica.

Arachidonic acid is converted to (8R)-hydroperoxyeicosa-5,9,11, 14-tetraenoic acid (8-HPETE) during incubations with homogenates of the central nervous system of the marine mollusc, Aplysia californica. 8-HPETE can be reduced to the corresponding hydroxy acid or be enzymatically converted to a newly identified metabolite, 8-ketoeicosa-5,9,11,14-tetraenoic acid (8-KETE). These metabolites were i...

متن کامل

The Role of Leukotrienes in Respiratory Tract and Asthma

Polyunsaturated fatty acids play a role as precursors of biolo­gically active compounds that can act as mediators or modulators  of various cell functions. Thus three main groups of derivatives­ the prostaglandins, the thromboxanes, and recently discovered  leukotrienes are formed by oxygenation and further transformation of various polyunsaturated fatty acids of which arachidonic acid  plays t...

متن کامل

Ionotropic Glutamate Receptors and their Role in Neurological Diseases

Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...

متن کامل

P19: Long-Term Potentiation

The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...

متن کامل

P 96: Role of Thrombin in Inflammatory Central Nervous System (CNS) Diseases

Thrombin is a multifunctional enzyme which has key roles in coagulation cascade and inflammatory events. The pro-inflammatory functions of thrombin occur by different mechanisms including increasing mast cell degranulation, up-regulating the expression of cell adhesion molecules (CAMs) and promoting the secretion of inflammatory chemokines and cytokines. Dysregulated signaling functions of thro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 7 11  شماره 

صفحات  -

تاریخ انتشار 1987